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1. Integral formulae. Let us deal with the problem of finding a profil 
with minimum wave drag in a supersonic stream of gas. Assume a uniform 
gas flow with approach velocity wm parallel to the x axis, and also point 
A and 3 through which the required profile is to pass (Fig. 1). 

Shock wave AC passes through point A, and in special cases it can 
merge (or degenerate) into the characteristic of the approaching gas 
stream, 

Now draw through point B a characteristic of a second family which 
intersects the shock wave at C. From C draw the characteristic of the 
first family to its intersection on profile AB at point D. 

The flow is determined by equations of continuity and of motion, by 
the Bernouilli integral and by an equation expressing the adiabatic law, 
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Fig. I. 

where x. y are Cartesian coordinates, IV is the velocity in terms of the 
critical flow velocity, a*; 8 is the angle of inclination of the velocity 
with respect to the x axis, P is the gas density in terms of the density 
of the approaching stream p,; p is the pressure in terms of p,a 2, K iS * 
the adiabatic index, $ is a stream function. 

We now introduce Yach angle a where sinPa = ~p/pw’. 

If line CD is indeed a characteristic, the part of the profile BD does 
not influence flow to the left of CD. It therefore follows that the 
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section BL) should give minimum drag. Here the auxiliary problem arises of 
determining the shape of contour BD for the given characteristic CD. This 
problem is exactly analogous to that of axially symmetrical flow referred 
to in [ 1, 2 1, which is solved in the same way and leads to the following 
results. 

On characteristic BC. the magnitudes of a and 8 can be obtained from 
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The quantity o(ll/) has the following significance, In what follows it 
will be inconvenient to introduce an entropy function. It is more con- 
venient to assume that the gas has passed through shock wave AC, whose 
angle of inclination to the x axis for each value of $ equals o($). The 
quantity S(o) is given by 
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The quantities x and p which appear in (1.5) and (1.6) are constant 
Lagrange multipliers, 

Now let us study the full problem. 

Let us denote the contour formed by shock wave AC, the characteristic 
BC and profile AB by i. and the region enclosed by this contour by 8. 

From equations (1.1). (1.2). it follows that 

$.g (P+P w cos”&)+ g pw2sin6cos9=0 2 

If we integrate both parts of this equation over region z, and trans- 
form by Green’s formula to a contour integral, we obtain, 
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The component x of this integral along the line AB (dy = tan 0 dx), 

is equal to the drag of the profile up to a multiplicative constant 

x= s PdY 

U=@A 
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Now express X in terms of integrals along dC and BC, using (1.7). Along 
the shock wave we have: 

(1.8) 

Moreover, to the left of the shock wave 
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Along the characteristic of the second family 

dx = - S (a) A (a) 
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Making use of these equalities. the expression for o and equation (1.3) 
we obtain 

_~sinasin(5-a) dJ, 
x It (1.10) 

where x = p()J_ x @* is the stagnation density). 

The given quantities X = %g - xA and Y = yB - yA can, with the help of 

(1.8) and (1.9) also be expressed as integrals along AC and BC: 

(1.11) 

2. Variational Problem. The following variational problem arises. For 

given w_, X and Y, find the function a($) which gives a minimum of the 

function (1.10) for iso-primetric conditions (1. ll), if a(o) and 8(o) are 
determined by the system of equations (1.5) and (1.6). The latter condi- 

tion may not be fulfilled when a boundary extremum condition prevails. 

From the fact that shock waves can exist in &%C follows the admiss- 

ibility of “piecewise” continuous functions a(o) and 6(o) which satisfy 
the shock relations at the points of discontinuity. The permissible 

functions o(lj/) are continuous functions. 

We will use the Lagrange multiplier method to solve the problem. Let 

us set up the functional 
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and A, p 8re Lagrange multipliers which have to be determined. Their 
values can be determined from condition (1.111. Obviously equations (1.5) 
and (f.6) are still valid and determine the dependence of a(o) and @(a). 

The first variation of function (2.1) takes the following form; 

In order to obtain the extremum we equate the expression in front of 
the integral sign to zero. 

@ I*‘=Jlc = 0 (2.2) 

Inasmuch 85 permissible variations 8X and 6Y are zero. we obtain 

In order to obtain the extremum the integrand in (2.3) should be 
equated to zero. This gives Q0 = 0, or 

woD sin2 e co8 aS (a) s (0) A (3) [h sin (a---r;)+u co9 (6 - a)]- VGp = 0. (2.4) 

where 

2x S(G) = - 
c 

4wm2 sin d l--W 

X---l 4xw,2sin2a-((x~-~)(1-W) 
--- 

(1 - W co@ u) sin d 1 
Apart from a, 8 and @ equations (1.5). (1.6) and (2.4) only contain 

constant magnitudes. It follows therefore that in fulfilling the Euler 
equation (2.4) we obtain a = const. 8 = const. a = const. 

It might appear that the solution of the problem is simple in form; 
the shock wave is a straight line, behind the wave there is uniform flow 
and the required profile is a straight line. However this is not so. 

Eliminating h and p from (1.5) and (2.41, we then get 

a = .s (c) A (a) (sin 2a + x sin 29)+ 
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If we now put the values of a(o.woo), i%o,w,), known from the shock 
wave expressions. into (2.5). it is e8Sy to see that the equation is not 
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satisfied ident icsl ly. 

One of the roots of equation c = 0 is (T = arc sin Mm-‘, where M, is 
the Mach number of the approaching flow. 

For any thickness ratio 1 = X : Y a solution which satisfies (2.4) and 
the shock wave expressions, is in general not possible. The solution must 
be found from particular physically attainable flows. The problem is in- 
deed that of connecting the straight line portion of the shock wave with 
the straight line characteristic by lines of the shock wave and of the 
characteristic of the second family which give the boundary extremum. In 
the case of rsrefaction flows such lines are those determined by a break 
in the contour AK 

Fig. 2. Fig. 3. 

The following cases are possible. 

(a) The value E = 0 is attained at some point on characteristic BC in 
the case of an expansion flow (convex profile). 

(b) Value ci = 0 is attained in a compression flow (concave profile). 

Let us discuss the first case. Let us construct all the possible flows 
which will satisfy the above conditions and correspond to various thick- 
ness ratios E. Here one linear dimension may be fixed. Suppose Point D 
fFig.2) represents the point of discontinuity on the profile causing ex- 
pansion of the flow, AE is the straight line portion of the shock wave, 
DE is the straight line charac.teristic, From point D there emanates a fan 
of characteristics of the first family, EF is the characteristic of the 
second family going through point E. EKfi is the streamline passing through 
E. Such a flow is determined by one parameter, for instance ‘JA. 

Within the field of flow let us take note of line DFKC. which defines 
the geometric locus of points which embody the following properties. 
Equation f = 0 is fulfilled along DFK. Points in section KG are such that, 
if second-family-characteristics satisfying equations (1.5) and (1.6) are 
radiated from them, then at the points where these characteristics inter- 
sect the streamline Hf. and therefore for smaller values of +, this equa- 
tion c = 0 is again fulfilled. These characteristics and those of the 
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first family from FKG. determine the required profile (Goursat’s problem). 

For such a flow it is not possible to find an explicit expression of 
the transverse condition analogous to (2.2). We will therefore use a 
numerical method for finding the minimum from the boundary conditions, 
i.e. for each aA we will evolve the attained profile with a given thick- 
ness ratio and then find the minimum of x : Y with respect to 04 numeric- 
ally. 

Note: In this problem the boundary extremum is realised and the first 
variation Sx in the solution is not zero. The generally accepted pre- 
sumption that ax& 0 cannot give a solution to the problem appears to be 
incorrect. 

T 

1 8.8390 

=A 0.42522 

"B 0.99369 

YR 0,11217 

XD 0.10892 

YD 0.01245 

c* min 0.09697 

C x he& 0.09698 , 

TABLE I 

5.0514 

0.50039 

0.98096 

0.19420 

0.17266 

0.03478 

0,19401 

- 

3.3197 2.5066 

0.60074 0.70141 

0.95750 0.92881 

0.28844 0.37055 

0.23290 0.28030 

0.07143 0.11323 

0.33882 0.49994 

0.19403 0.33888 1 0.49999 

3. Examples. Fig. 3 shows the relation uA(Mm) which satisfies E = 0. 
Line ab is determined by the equation; 

1 
d = PI% sin Bl 

whilst line cd gives the second root of E = 0. and line ef the third. 
Line af corresponds to a sonic velocity beyond the shock wave. Region I 
is not physically possible (a rarefaction shock), region II corresponds 
to concave profiles while region III is convex. Results of calculations 
made for M, = 3 are shown in Table 1, and the profiles are shown in Fig.rl. 

Fig. 4. 
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c is the coefficient of wave resistance. 
is clear that minimum drag profiles. 

From Table 1 and Fig. 4 it 
that is for the calculated cases, 

are to all intents and purposes wedge shaped, whilst any gain in cz is 
negligible. The group of characteristics occupies only a small angle; the 
profile consists of two straight sections AD and DB’. The curved portion 
of profile B’B is very small indeed, For example for profiles of thickness 
ratio t = 2.5966, after finding cxmin, the values of cx.(cA) shown in 
Table 2 were obtained. 

The value uA = 0.7000 corresponds to the case when characteristic BC 

goes through point F (Fig.2). 

TABLE 2 

0 * 6980 
0.6990 

0.7000 
0.7002 
0.7004 
0:7006 
0.7008 

-___ 

0‘499993 
0.499979 
0.499954 
0.499949 
0.499945 
0.499941 
0.499938 

0.7010 0.499936 
0.7012 0.499935 
0.7014 0 ‘499935 
0.7016 0.499935 
0.7018 0.499936 
0.7020 0.499938 
0.7040 0.499980 
0.7080 0.500109 

- 
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